253 research outputs found

    Age-Optimal Information Updates in Multihop Networks

    Full text link
    The problem of reducing the age-of-information has been extensively studied in the single-hop networks. In this paper, we minimize the age-of-information in general multihop networks. If the packet transmission times over the network links are exponentially distributed, we prove that a preemptive Last Generated First Served (LGFS) policy results in smaller age processes at all nodes of the network (in a stochastic ordering sense) than any other causal policy. In addition, for arbitrary general distributions of packet transmission times, the non-preemptive LGFS policy is shown to minimize the age processes at all nodes of the network among all non-preemptive work-conserving policies (again in a stochastic ordering sense). It is surprising that such simple policies can achieve optimality of the joint distribution of the age processes at all nodes even under arbitrary network topologies, as well as arbitrary packet generation and arrival times. These optimality results not only hold for the age processes, but also for any non-decreasing functional of the age processes.Comment: arXiv admin note: text overlap with arXiv:1603.0618

    Capacity of Compound MIMO Gaussian Channels with Additive Uncertainty

    Full text link
    This paper considers reliable communications over a multiple-input multiple-output (MIMO) Gaussian channel, where the channel matrix is within a bounded channel uncertainty region around a nominal channel matrix, i.e., an instance of the compound MIMO Gaussian channel. We study the optimal transmit covariance matrix design to achieve the capacity of compound MIMO Gaussian channels, where the channel uncertainty region is characterized by the spectral norm. This design problem is a challenging non-convex optimization problem. However, in this paper, we reveal that this problem has a hidden convexity property, which can be exploited to map the problem into a convex optimization problem. We first prove that the optimal transmit design is to diagonalize the nominal channel, and then show that the duality gap between the capacity of the compound MIMO Gaussian channel and the min-max channel capacity is zero, which proves the conjecture of Loyka and Charalambous (IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2048-2063, 2012). The key tools for showing these results are a new matrix determinant inequality and some unitarily invariant properties.Comment: 8 pages, submitted to IEEE Transactions on Information Theor
    • …
    corecore